Microstructure of Haynes® 282® Superalloy after Vacuum Induction Melting and Investment Casting of Thin-Walled Components
نویسندگان
چکیده
The aim of this work was to characterize the microstructure of the as-cast Haynes® 282® alloy. Observations and analyses were carried out using techniques such as X-ray diffraction (XRD), light microscopy (LM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray spectroscopy (EDS), wave length dispersive X-ray spectroscopy (WDS), auger electron spectroscopy (AES) and electron energy-loss spectrometry (EELS). The phases identified in the as-cast alloy include: γ (gamma matrix), γ' (matrix strengthening phase), (TiMoCr)C (primary carbide), TiN (primary nitride), σ (sigma-TCP phase), (TiMo)₂SC (carbosulphide) and a lamellar constituent consisting of molybdenum and chromium rich secondary carbide phase together with γ phase. Within the dendrites the γ' appears mostly in the form of spherical, nanometric precipitates (74 nm), while coarser (113 nm) cubic γ' precipitates are present in the interdendritic areas. Volume fraction content of the γ' precipitates in the dendrites and interdendritic areas are 9.6% and 8.5%, respectively. Primary nitrides metallic nitrides (MN), are homogeneously dispersed in the as-cast microstructure, while primary carbides metallic carbides (MC), preferentially precipitate in interdendritic areas. Such preference is also observed in the case of globular σ phase. Lamellar constituents characterized as secondary carbides/γ phases were together with (TiMo)₂SC phase always observed adjacent to σ phase precipitates. Crystallographic relations were established in-between the MC, σ, secondary carbides and γ/γ' matrix.
منابع مشابه
Nickel Base Superalloy Rene®80 – The Effect of High Temperature Cyclic Oxidation on Platinum-Aluminide Coating Features
Nickel base superalloy alloys are used in the manufacture of gas turbine engine components, which in use are exposed to high temperatures and corrosive environments. The platinum aluminide coatings described here have been developed to protect nickel base superalloy alloys from oxidation. In this study, the effect of cyclic oxidation, platinum layer thickness and aluminizing process on beha...
متن کاملInvestigation of the Effect of Homogenization Treatment on Distribution of Alloying Elements, Microstructure and Hardness of Co-Al-W-Ti-Ta-Base Superalloy
The aim of this study was to investigate the effect of temperature and time of homogenization treatment on the microstructure, distribution of alloying elements and hardness of the novel Co-based superalloy Co-7Al-7W-4Ti-2Ta. For this purpose, the specimens were first homogenized at 1250 and 1300 °C for 2, 4, 6 and 8 hours and then water-cooled. Subsequently, the specimens were subjected to har...
متن کاملThe effect of slip casting parameters on the ultrafine microstructure and density of pore-free YAG ceramic obtained by vacuum sintering
In this study, the effect of slip casting parameters on the ultrafine microstructure and the density of pore-free YAG ceramic was evaluated. A stable, high concentrated aqueous YAG slurry using Dolapix-CE64 as a dispersant was prepared. The effect of dispersant concentration as well as the solid load on the stability and rheological behavior of the slurry was also studied. The optimal dispersan...
متن کاملDeveloping Process Design Methodology for Investment Cast Thin-Walled Structures
Components for engineering systems, such as gas turbines and jet engines operating at high temperature are usually produced in superalloys. The investment casting process is most widely used for manufacturing these components due to the ability of the process to produce parts with complex geometries to close dimensional tolerances. Other processing routes are less advantageous due to high mecha...
متن کاملImpact Deformation and Fracture Behaviour of Cobalt-Based Haynes 188 Superalloy
The impact deformation and fracture behaviour of cobalt-based Haynes 188 superalloy are investigated by means of a split Hopkinson pressure bar. Impact tests are performed at strain rates ranging from 1×103 s-1 to 5×103 s-1 and temperatures between 25°C and 800°C. The experimental results indicate that the flow response and fracture characteristics of cobalt-based Haynes 188 superalloy are sign...
متن کامل